A Neural Network Approach to Selectional Preference Acquisition
نویسنده
چکیده
This paper investigates the use of neural networks for the acquisition of selectional preferences. Inspired by recent advances of neural network models for nlp applications, we propose a neural network model that learns to discriminate between felicitous and infelicitous arguments for a particular predicate. The model is entirely unsupervised – preferences are learned from unannotated corpus data. We propose two neural network architectures: one that handles standard two-way selectional preferences and one that is able to deal with multi-way selectional preferences. The model’s performance is evaluated on a pseudo-disambiguation task, on which it is shown to achieve state of the art performance.
منابع مشابه
The optimized model of factors effecting on the Merger and Acquisition from multiple dimensions with neural network approach.
Nowadays, firms apply the merger and acquisition strategy for gaining synergy, increasing the wealth of stockholders, economics of scales, enhancing efficiency, increasing the ability to research and develop, developing the firm and decreasing the risk. Developing an optimized model with the ability to identify the effective variables on the merger and acquisition process has a significant ...
متن کاملAutomatic Selectional Preference Acquisition for Latin Verbs
We present a system that automatically induces Selectional Preferences (SPs) for Latin verbs from two treebanks by using Latin WordNet. Our method overcomes some of the problems connected with data sparseness and the small size of the input corpora. We also suggest a way to evaluate the acquired SPs on unseen events extracted from other Latin corpora.
متن کاملWord Sense Disambiguation For Acquisition Of Selectional Preferences
The selectional preferences of verbal predicates are an important component of lexical information useful for a number of NLP tasks including disambigliation of word senses. Approaches to selectional preference acquisition without word sense disambiguation are reported to be prone to errors arising from erroneous word senses. Large scale automatic semantic tagging of texts in sufficient quantit...
متن کاملSelectional preference acquisition through matrix factorization with missing data
Words in an utterance are not placed in their respective slots randomly from a uniform distribution. In English, for example, a verb will rarely, if ever, follow a determiner. This is a syntactic restriction. From another perspective, one would not expect to find a word such as defenestration as the object of eat. This is what is known as the selectional preference of a word for another word in...
متن کاملFast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014